MATHEMATICS: POLYNOMIALS OF BEST APPROXIMATION ON A REAL FINITE POINT SET
نویسندگان
چکیده
منابع مشابه
S.o.s. Approximation of Polynomials, Nonnegative on a Real Algebraic Set
Abstract. Wih every real polynomial f , we associate a family {fǫr}ǫ,r of real polynomials, in explicit form in terms of f and the parameters ǫ > 0, r ∈ N, and such that ‖f − fǫr‖1 → 0 as ǫ → 0. Let V ⊂ R be a real algebraic set described by finitely many polynomials equations gj(x) = 0, j ∈ J , and let f be a real polynomial, nonnegative on V . We show that for every ǫ > 0, there exist nonnega...
متن کاملFuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملOn Polynomials of Best One Sided Approximation
Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden. Die Spei...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملBehavior of Polynomials of Best Uniform Approximation
We investigate the asymptotic behavior of the polynomials {Pn(f)}'t' of best uniform approximation to a function f that is continuous on a compact set K of the complex plane C and analytic in the interior of K, where K has connected complement. For example, we show that for "most" functions f, the error f -Pn(f) does not decrease faster at interior points of K than on K itself. We also describe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1957
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.43.9.845